Package org.tquadrat.foundation.javacomposer
JavaComposer is a Java toolkit for the generation of Java source
code. Basically, this is a fork of version 1.11.1 of JavaPoet
that was originally developed by Square, Inc. (see
below).
Refer to
https://github.com/square/javapoet
for the original software.
The interfaces in this package are not meant to be implemented by the user; instead they provide several static methods that allow to obtain an instance of the respective implementation. According to this, the behaviour of the adapted version is not different from the original.
Unless otherwise stated, null
argument values will cause
methods and constructors of all classes in this package to throw an
Exception
,
usually a
NullArgumentException
,
but in some rare cases, it could be also a
NullPointerException
.
Source code generation can be useful when doing things such as annotation processing or interacting with metadata files (e.g., database schemas, protocol formats). By generating the code, you eliminate the need to write boilerplate while also keeping a single source of truth for the metadata.
Example
Here's a (boring) HelloWorld class:
package com.example.helloworld; public final class HelloWorld { public static void main(String[] args) { System.out.println("Hello, JavaComposer!"); } }
And this is the (exciting) code to generate it with JavaComposer:
MethodSpec main = MethodSpec.methodBuilder( "main" ) .addModifiers( Modifier.PUBLIC, Modifier.STATIC ) .returns( void.class ) .addParameter( String[].class, "args" ) .addStatement( "$T.out.println($S)", System.class, "Hello, JavaComposer!" ) .build(); TypeSpec helloWorld = TypeSpec.classBuilder( "HelloWorld" ) .addModifiers( Modifier.PUBLIC, Modifier.FINAL ) .addMethod( main ) .build(); JavaFile javaFile = JavaFile.builder( "com.example.helloworld", helloWorld ) .layout( JavaFile.Layout.LAYOUT_JAVAPOET ) .build(); javaFile.writeTo( System.out );
To declare the main method, we've created a
MethodSpec
"main" and configured it with modifiers,
return type, parameters and code statements. We add
that main method to a HelloWorld
class, and then add that to a
HelloWorld.java
file.
In this case we write the file to
System.out
,
but we could also get it as a string
(JavaFile.toString()
)
or write it to the file system
(JavaFile.writeTo()
).
It can be used also directly as input to an instance of
JavaCompiler
(JavaFile.toJavaFileObject()
).
The JavaDoc lists the complete JavaComposer API, which we explore
below.
Code & Control Flow
Most of JavaComposer's API uses plain old immutable Java objects. There
are also builders, method chaining and varargs to make the API friendly to
use. JavaComposer offers models for classes & interfaces
(TypeSpec
),
fields
(FieldSpec
),
methods & constructors
(MethodSpec
),
parameters
(ParameterSpec
),
annotations
(AnnotationSpec
)
and lambdas
(LambdaSpec
).
But the body of methods and constructors is not modelled. There's no expression class, no statement class or syntax tree nodes. Instead, JavaComposer uses strings for code blocks:
MethodSpec main = MethodSpec.methodBuilder( "main" ) .addCode( """ int total = 0; for (int i = 0; i < 10; i++) { total += i; } """ ) .build();
Which generates this:
void main() { int total = 0; for (int i = 0; i < 10; i++) { total += i; } }
The manual semicolons, line wrapping, and indentation are tedious and so
JavaComposer offers APIs to make it easier. There's
addStatement()
which takes care of semicolons and newline, and
beginControlFlow()
and
endControlFlow()
which are used together for braces, newlines, and indentation. The output
from the code below is the same as above:
MethodSpec main = MethodSpec.methodBuilder( "main" ) .addStatement( "int total = 0" ) .beginControlFlow( "for (int i = 0; i < 10; i++)" ) .addStatement( "total += i" ) .endControlFlow() .build();
This example is lame because the generated code is constant! Suppose instead of just adding 0 to 10, we want to make the operation and range configurable. Here's a method that generates a method:
private MethodSpec computeRange( String name, int from, int to, String op ) { var retValue = MethodSpec.methodBuilder( name ) .returns( int.class ) .addStatement( "int result = 1" ) .beginControlFlow( "for (int i = " + from + "; i < " + to + "; i++)" ) .addStatement( "result = result " + op + " i" ) .endControlFlow() .addStatement( "return result" ) .build(); //---* Done *---------------------------------------------------------- return retValue; } // computeRange()
And here's what we get when we call
computeRange( "multiply10to20", 10, 20, "*" )
:
int multiply10to20() { int result = 1; for (int i = 10; i < 20; i++) { result = result * i; } return result; }
Methods generating methods! And since JavaComposer generates source instead of byte code, you can read through it to make sure it's right.
$L
for Literals
The string-concatenation in calls to beginControlFlow()
and
addStatement()
is distracting. Too many operators. To address
this, JavaComposer offers a syntax inspired-by but incompatible with
String.format(String,Object[])
.
It accepts $L
to emit a literal value in the output. This
works just like
Formatter
's
%s
:
private MethodSpec computeRange( String name, int from, int to, String op ) { var retValue = MethodSpec.methodBuilder( name ) .returns( int.class ) .addStatement( "int result = 0" ) .beginControlFlow( "for (int i = $L; i < $L; i++)", from, to ) .addStatement( "result = result $L i", op ) .endControlFlow() .addStatement( "return result" ) .build(); //---* Done *---------------------------------------------------------- return retValue; } // computeRange()
Literals are emitted directly to the output code with no escaping. Arguments for literals may be Strings, primitives, and a few JavaComposer types described below.
$S
for Strings
When emitting code that includes string literals, we can use
$S
to emit a string, complete with wrapping quotation marks
and escaping. Here's a program that emits three methods, each of which
returns its own name:
public static void main( String[] args ) throws Exception { TypeSpec helloWorld = TypeSpec.classBuilder( "HelloWorld" ) .addModifiers( Modifier.PUBLIC, Modifier.FINAL ) .addMethod( whatsMyName( "slimShady" ) ) .addMethod( whatsMyName( "eminem" ) ) .addMethod( whatsMyName( "marshallMathers" ) ) .build(); JavaFile javaFile = JavaFile.builder( "com.example.helloworld", helloWorld ) .layout( JavaFile.Layout.LAYOUT_JAVAPOET ) .build(); javaFile.writeTo(System.out); } // main() private static MethodSpec whatsMyName( String name ) { var retValue MethodSpec.methodBuilder( name ) .returns( String.class ) .addStatement( "return $S", name ) .build(); //---* Done *---------------------------------------------------------- return retValue; } // whatsMyName()
In this case, using $S
gives us quotation marks:
public final class HelloWorld { String slimShady() { return "slimShady"; } String eminem() { return "eminem"; } String marshallMathers() { return "marshallMathers"; } }
$T
for Types
We Java programmers love our types: they make our code easier to
understand. And JavaComposer is on board. It has rich built-in support for
types, including automatic generation of import statements. Just use
$T
to reference types:
MethodSpec today = MethodSpec.methodBuilder( "today" ) .returns( Date.class ) .addStatement( "return new $T()", Date.class ) .build(); TypeSpec helloWorld = TypeSpec.classBuilder( "HelloWorld" ) .addModifiers( Modifier.PUBLIC, Modifier.FINAL ) .addMethod( today ) .build(); JavaFile javaFile = JavaFile.builder( "com.example.helloworld", helloWorld ) .layout( JavaFile.Layout.LAYOUT_JAVAPOET ) .build(); javaFile.writeTo( System.out );
That generates the following *.java
file, complete with the
necessary import:
package com.example.helloworld; import java.util.Date; public final class HelloWorld { Date today() { return new Date(); } }
We passed Date.class
to reference a class that
just-so-happens to be available when we're generating code. This doesn't
need to be the case. Here's a similar example, but this one references a
class that doesn't exist (yet):
ClassName hoverboard = ClassName.get( "com.mattel", "Hoverboard" ); MethodSpec today = MethodSpec.methodBuilder( "tomorrow" ) .returns( hoverboard ) .addStatement( "return new $T()", hoverboard ) .build();
And that not-yet-existent class is imported as well:
package com.example.helloworld; import com.mattel.Hoverboard; public final class HelloWorld { Hoverboard tomorrow() { return new Hoverboard(); } }
The ClassName
type is very important, and you'll need it
frequently when you're using JavaComposer. It can identify any declared
class. Declared types are just the beginning of Java's rich type system: we
also have arrays, parameterised types, wildcard types, and type variables.
JavaComposer has classes for building each of these:
ClassName hoverboard = ClassName.get( "com.mattel", "Hoverboard" ); ClassName list = ClassName.get( "java.util", "List" ); ClassName arrayList = ClassName.get( "java.util", "ArrayList" ); TypeName listOfHoverboards = ParameterizedTypeName.get( list, hoverboard ); MethodSpec beyond = MethodSpec.methodBuilder( "beyond" ) .returns( listOfHoverboards ) .addStatement( "$T result = new $T<>()", listOfHoverboards, arrayList ) .addStatement( "result.add(new $T())", hoverboard ) .addStatement( "result.add(new $T())", hoverboard ) .addStatement( "result.add(new $T())", hoverboard ) .addStatement( "return result" ) .build();
JavaComposer will decompose each type and import its components where possible:
package com.example.helloworld; import com.mattel.Hoverboard; import java.util.ArrayList; import java.util.List; public final class HelloWorld { List<Hoverboard> beyond() { List<Hoverboard> result = new ArrayList <>(); result.add(new Hoverboard()); result.add(new Hoverboard()); result.add(new Hoverboard()); return result; } }
Import static
JavaComposer also supports import static
. It does it via
explicitly collecting type member names. Let's enhance the previous example
with some static sugar:
… ClassName namedBoards = ClassName.get( "com.mattel", "Hoverboard", "Boards" ); MethodSpec beyond = MethodSpec.methodBuilder( "beyond" ) .returns( listOfHoverboards ) .addStatement( "$T result = new $T<>()", listOfHoverboards, arrayList ) .addStatement( "result.add($T.createNimbus(2000))", hoverboard ) .addStatement( "result.add($T.createNimbus(\"2001\"))", hoverboard ) .addStatement( "result.add($T.createNimbus($T.THUNDERBOLT))", hoverboard, namedBoards ) .addStatement( "$T.sort(result)", Collections.class ) .addStatement( "return result.isEmpty() ? $T.emptyList() : result", Collections.class ) .build(); TypeSpec hello = TypeSpec.classBuilder( "HelloWorld" ) .addMethod( beyond ) .build(); JavaFile.builder( "com.example.helloworld", hello ) .layout( JavaFile.Layout.LAYOUT_JAVAPOET ) .addStaticImport( hoverboard, "createNimbus" ) .addStaticImport( namedBoards, "*" ) .addStaticImport( Collections.class, "*" ) .build();
JavaComposer will first add your import static block to the file as configured, match and mangle all calls accordingly and also import all other types as needed:
package com.example.helloworld; import static com.mattel.Hoverboard.Boards.*; import static com.mattel.Hoverboard.createNimbus; import static java.util.Collections.*; import com.mattel.Hoverboard; import java.util.ArrayList; import java.util.List; class HelloWorld { List<Hoverboard> beyond() { List<Hoverboard> result = new ArrayList<>(); result.add(createNimbus(2000)); result.add(createNimbus("2001")); result.add(createNimbus(THUNDERBOLT)); sort(result); return result.isEmpty() ? emptyList() : result; } }
$N
for Names
Generated code is often self-referential. Use $N
to refer
to another generated declaration by its name. Here's a method that calls
another:
public String byteToHex(int b) { char[] result = new char[2]; result[0] = hexDigit((b >>> 4) & 0xf); result[1] = hexDigit(b & 0xf); return new String(result); } public char hexDigit(int i) { return (char) (i < 10 ? i + '0' : i - 10 + 'a'); }
When generating the code above, we pass the hexDigit()
method as an argument to the byteToHex()
method using
$N
:
MethodSpec hexDigit = MethodSpec.methodBuilder( "hexDigit" ) .addParameter( int.class, "i" ) .returns( char.class ) .addStatement( "return (char) (i < 10 ? i + '0' : i - 10 + 'a')" ) .build(); MethodSpec byteToHex = MethodSpec.methodBuilder( "byteToHex" ) .addParameter( int.class, "b" ) .returns( String.class ) .addStatement( "char[] result = new char[2]" ) .addStatement( "result[0] = $N((b >>> 4) & 0xf)", hexDigit ) .addStatement( "result[1] = $N(b & 0xf)", hexDigit ) .addStatement( "return new String(result)" ) .build();
Code block format strings
Code blocks may specify the values for their placeholders in a few ways. Only one style may be used for each operation on a code block.
In each example, we generate code to say "I ate 3 tacos".
Relative Arguments
Pass an argument value for each placeholder in the format string to
CodeBlock.add()
.
CodeBlock.builder().add( "I ate $L $L", 3, "tacos" );
Positional Arguments
Place an integer index (1-based) before the placeholder in the format string to specify which argument to use.
CodeBlock.builder().add( "I ate $2L $1L", "tacos", 3 );
Named Arguments
Use the syntax
$<argumentName>:<X>
where X
is the format character, and call
CodeBlock.addNamed()
with a map containing all argument keys in the format string. Argument
names use characters in a-z, A-Z, 0-9, and _, and must start with a
lowercase character.
Map<String,Object> map = Map.of( "food", "tacos", "count", 3 ); CodeBlock.builder().addNamed( "I ate $count:L $food:L", map );
Methods
All of the above methods have a code body. Use
Modifier.ABSTRACT
to get a method without any body. This is only legal if the enclosing class
is either abstract or an interface.
MethodSpec flux = MethodSpec.methodBuilder( "flux" ) .addModifiers( Modifier.ABSTRACT, Modifier.PROTECTED ) .build(); TypeSpec helloWorld = TypeSpec.classBuilder( "HelloWorld" ) .addModifiers( Modifier.PUBLIC, Modifier.ABSTRACT ) .addMethod( flux ) .build();
Which generates this:
public abstract class HelloWorld { protected abstract void flux(); }
The other modifiers work where permitted. Note that when specifying
modifiers, JavaComposer uses
Modifier
,
a class that is not available on Android. This limitation applies to
code-generating-code only; the output code runs everywhere: JVMs, Android,
and GWT.
Methods also have parameters, exceptions, varargs, Javadoc comments,
annotations, type variables, and a return type. All of these are configured
with
MethodSpec.Builder
.
Constructors
MethodSpec
is a slight misnomer; it can also be used
for constructors:
MethodSpec flux = MethodSpec.constructorBuilder() .addModifiers( Modifier.PUBLIC ) .addParameter( String.class, "greeting" ) .addStatement( "this.$N = $N", "greeting", "greeting" ) .build(); TypeSpec helloWorld = TypeSpec.classBuilder( "HelloWorld" ) .addModifiers( Modifier.PUBLIC ) .addField( String.class, "greeting", Modifier.PRIVATE, Modifier.FINAL ) .addMethod( flux ) .build();
Which generates this:
public class HelloWorld { private final String greeting; public HelloWorld(String greeting) { this.greeting = greeting; } }
For the most part, constructors work just like methods. When emitting code, JavaComposer will place constructors before methods in the output file.
Parameters
Declare parameters on methods and constructors with either
JavaComposer.parameterBuilder(org.tquadrat.foundation.javacomposer.TypeName,CharSequence,javax.lang.model.element.Modifier...)
or
MethodSpec
's
convenience
addParameter()
API:
ParameterSpec android = composer.parameterBuilder( String.class, "android" ) .addModifiers( Modifier.FINAL ) .build(); MethodSpec welcomeOverlords = composer.methodBuilder( "welcomeOverlords" ) .addParameter( android ) .addParameter( String.class, "robot", Modifier.FINAL ) .build();
Though the code above to generate android
and robot
parameters is different, the output is the same:
void welcomeOverlords(final String android, final String robot) { }
The extended Builder form is mandatory when the parameter has
annotations (such as @Nullable
).
Fields
Like parameters, fields can be created either with builders or by using convenient helper methods:
FieldSpec android = FieldSpec.builder( String.class, "android" ) .addModifiers( Modifier.PRIVATE, Modifier.FINAL ) .build(); TypeSpec helloWorld = TypeSpec.classBuilder( "HelloWorld" ) .addModifiers( Modifier.PUBLIC ) .addField( android ) .addField( String.class, "robot", Modifier.PRIVATE, Modifier.FINAL ) .build();
Which generates:
public class HelloWorld { private final String android; private final String robot; }
The extended Builder form is necessary when a field has Javadoc
comments, annotations, or a field initializer. Field initializers use the
same String.format()
-like syntax as the code blocks above:
FieldSpec android = FieldSpec.builder( String.class, "android" ) .addModifiers( Modifier.PRIVATE, Modifier.FINAL ) .initializer( "$S + $L", "Lollipop v.", 5.0d ) .build();
Which generates:
private final String android = "Lollipop v." + 5.0;
The method
TypeSpec.addProperty()
can be used to add getter and setter together with the field:
FieldSpec android = FieldSpec.builder( String.class, "android" ) .addModifiers( Modifier.PRIVATE ) .build(); TypeSpec helloWorld = TypeSpec.classBuilder( "HelloWorld" ) .addModifiers( Modifier.PUBLIC ) .addProperty( android, false ) .build();
Which generates:
public class HelloWorld { private String android; public final String getAndroid() { return android; } public final void setAndroid(String value) { android = value; } }
Interfaces
JavaComposer has no trouble with interfaces. Note that interface methods
must always be public abstract
and interface fields must
always be public static final
. These modifiers are necessary
when defining the interface:
TypeSpec helloWorld = TypeSpec.interfaceBuilder( "HelloWorld" ) .addModifiers( Modifier.PUBLIC ) .addField( FieldSpec.builder( String.class, "ONLY_THING_THAT_IS_CONSTANT" ) .addModifiers( Modifier.PUBLIC, Modifier.STATIC, Modifier.FINAL ) .initializer( "$S", "change" ) .build() ) .addMethod( MethodSpec.methodBuilder( "beep" ) .addModifiers( Modifier.PUBLIC, Modifier.ABSTRACT ) .build() ) .build();
But these modifiers are omitted when the code is generated. These are
the defaults so we don't need to include them for javac
's
benefit!
public interface HelloWorld { String ONLY_THING_THAT_IS_CONSTANT = "change"; void beep(); }
Enums
Use
enumBuilder
to create the enum
type, and
addEnumConstant()
for each value:
TypeSpec helloWorld = composer.enumBuilder( "Roshambo" ) .addModifiers( Modifier.PUBLIC ) .addEnumConstant( "ROCK" ) .addEnumConstant( "SCISSORS" ) .addEnumConstant( "PAPER" ) .build();
To generate this:
public enum Roshambo { ROCK, SCISSORS, PAPER }
Fancy enums are supported, where the enum
values override
methods or call a superclass constructor. Here's a comprehensive
example:
TypeSpec helloWorld = composer.enumBuilder( "Roshambo" ) .addModifiers( Modifier.PUBLIC ) .addEnumConstant( "ROCK", composer.anonymousClassBuilder( "$S", "fist" ) .addMethod( composer.methodBuilder( "toString" ) .addAnnotation( Override.class ) .addModifiers( Modifier.PUBLIC ) .addStatement( "return $S", "avalanche!" ) .returns( String.class ) .build() ) .build() ) .addEnumConstant( "SCISSORS", composer.anonymousClassBuilder( "$S", "peace" ) .build() ) .addEnumConstant( "PAPER", composer.anonymousClassBuilder( "$S", "flat" ) .build() ) .addField( String.class, "handsign", Modifier.PRIVATE, Modifier.FINAL ) .addMethod( composer.constructorBuilder() .addParameter( String.class, "handsign" ) .addStatement( "this.$N = $N", "handsign", "handsign" ) .build() ) .build();
Which generates this:
public enum Roshambo { ROCK("fist") { @Override public String toString() { return "avalanche!"; } }, SCISSORS("peace"), PAPER("flat"); private final String handsign; Roshambo(String handsign) { this.handsign = handsign; } }
Anonymous Inner Classes
In the enum code above, we used
TypeSpec.anonymousClassBuilder()
to create an anonymous inner class. This can also be used in code blocks.
They are values that can be referenced with $L
:
TypeSpec comparator = composer.anonymousClassBuilder( "" ) .addSuperinterface( ParameterizedTypeName.get( Comparator.class, String.class ) ) .addMethod( composer.methodBuilder( "compare" ) .addAnnotation( Override.class )# .addModifiers( Modifier.PUBLIC )# .addParameter( String.class, "a" ) .addParameter( String.class, "b" ) .returns( int.class ) .addStatement( "return $N.length() - $N.length()", "a", "b" ) .build() ) .build(); TypeSpec helloWorld = TypeSpec.classBuilder( "HelloWorld" ) .addMethod( composer.methodBuilder( "sortByLength" ) .addParameter( ParameterizedTypeName.get( List.class, String.class ), "strings" ) .addStatement( "$T.sort($N, $L)", Collections.class, "strings", comparator ) .build() ) .build();
This generates a method that contains a class that contains a method:
void sortByLength(List<String> strings) { Collections.sort(strings, new Comparator<String>() { @Override public int compare(String a, String b) { return a.length() - b.length(); } }); }
One particularly tricky part of defining anonymous inner classes is the
arguments to the superclass constructor. In the above code we're passing
the empty string for no arguments:
composer.anonymousClassBuilder( "" )
. To
pass different parameters use JavaComposer's code block syntax with commas
to separate arguments.
Annotations
Simple annotations are easy:
MethodSpec toString = composer.methodBuilder( "toString" ) .addAnnotation( Override.class ) .returns( String.class ) .addModifiers( Modifier.PUBLIC ) .addStatement( "return $S", "Hoverboard" ) .build();
Which generates this method with an @Override
annotation:
@Override public String toString() { return "Hoverboard"; }
Use
JavaComposer.annotationBuilder()
to set properties on annotations:
MethodSpec logRecord = composer.methodBuilder( "recordEvent" ) .addModifiers( Modifier.PUBLIC, Modifier.ABSTRACT ) .addAnnotation( composer.annotationBuilder( Headers.class ) .addMember( "accept", "$S", "application/json; charset=utf-8" ) .addMember( "userAgent", "$S", "Square Cash" ) .build() ) .addParameter( LogRecord.class, "logRecord" ) .returns( LogReceipt.class ) .build();
Which generates this annotation with accept
and
userAgent
properties:
@Headers( accept = "application/json; charset=utf-8", userAgent = "Square Cash" ) LogReceipt recordEvent(LogRecord logRecord);
When you get fancy, annotation values can be annotations themselves. Use
$L
for embedded annotations:
MethodSpec logRecord = composer.methodBuilder( "recordEvent" ) .addModifiers( Modifier.PUBLIC, Modifier.ABSTRACT ) .addAnnotation( composer.annotationBuilder( HeaderList.class ) .addMember( "value", "$L", composer.annotationBuilder( Header.class ) .addMember( "name", "$S", "Accept" ) .addMember( "value", "$S", "application/json; charset=utf-8" ) .build() ) .addMember( "value", "$L", composer.annotationBuilder( Header.class ) .addMember( "name", "$S", "User-Agent" ) .addMember( "value", "$S", "Square Cash" ) .build() ) .build() ) .addParameter( LogRecord.class, "logRecord" ) .returns( LogReceipt.class ) .build();
Which generates this:
@HeaderList({ @Header(name = "Accept", value = "application/json; charset=utf-8"), @Header(name = "User-Agent", value = "Square Cash") }) LogReceipt recordEvent(LogRecord logRecord);
Note that you can call
addMember()
multiple times with the same property name to populate a list of values for
that property.
Javadoc
Fields, methods and types can be documented with Javadoc (in fact, they should be documented, even for generated code):
MethodSpec dismiss = composer.methodBuilder( "dismiss" ) .addJavadoc( """ Hides {@code message} from the caller's history. Other participants in the conversation will continue to see the message in their own history unless they also delete it. """ ) .addJavadoc( "\n" ) .addJavadoc( """ <p>Use {@link #delete($T)} to delete the entire conversation for all participants. """, Conversation.class ) .addModifiers( Modifier.PUBLIC, Modifier.ABSTRACT ) .addParameter( Message.class, "message" ) .build();
Which generates this:
/** * Hides {@code message} from the caller's history. Other * participants in the conversation will continue to see the * message in their own history unless they also delete it. * * <p>Use {@link #delete(Conversation)} to delete the entire * conversation for all participants. */ void dismiss(Message message);
Use $T
when referencing types in JavaDoc to get automatic
imports.
Lambda
LambdaSpec
provides a
basic API for the generation of lambda expressions.
The code
ParameterSpec parameter = ParameterSpec.of( VOID, "s" ); LambdaSpec lambda = LambdaSpec.builder() .addParameter( parameter ) .addCode( "upperCase( $N )" , parameter ) .build(); CodeBlock codeBlock = CodeBlock.of( "$T<$T> function = $L;", UnaryOperator.class, String.class, candidate );
generates
java.util.function.UnaryOperator<java.lang.String> function = s -> upperCase( s );
Layout
You may have noticed that the layout for the samples of generating code looks different from that of generated code: the first was formatted like the code for the Foundation Library, while the layout for the second was that used by the original JavaPoet code.
When creating a new
JavaComposer
you can specify a
Layout
with the
constructor
that determines the look of the output, generated by
JavaFile
.
Currently, this implementation supports the following layouts:
LAYOUT_JAVAPOET
- The format as used by the original JavaPoet software from Square,Inc.
LAYOUT_FOUNDATION
- The format as used by the Foundation Library
Debug Output
In particular when generating complex code, it is not immediately obvious which statement of the generator was responsible for which part of the output.
To help with the debugging of generated code, it is possible to prepend each component of the generated code with the name of the class and the line number where the method creating that component was called.
This feature is activated when the JavaComposer
is created.
License
The original code is Copyright © 2015 Square, Inc.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either expressed or implied. See the License for the specific language governing permissions and limitations under the License.
The modification for the Foundation version and the amendments are Copyright © 2018 by Thomas Thrien, tquadrat.org.
- Open Issues (The ToDo List):
-
- 2021-01-05 – An implementation for the new record type is needed. At 2021-02-14, the implementation is mostly done, only the parameterless constructor is missing.
- 2021-01-05 – The modifiers sealed and non-sealed needs to be implemented, together with the permits keyword.
- 2021-01-05 – How do we generate a package-info.java file?
- 2021-01-05 – How do we generate a module-info.java file?
- 2021-01-05 – Can we use the new switch statement for generated code?
- 2021-01-09 – Add the suppressable warnings from IntelliJ IDEA to the enum class SuppressableWarnings.
- 2021-01-09 – Add the missing suppressable warnings from the IntelliJ IDEA list.
- 2021-01-18 – Enhance the layouts that it will allow the generation of code that is fully Foundation compliant.
- 2021-01-18 – Remove the deprecated methods and classes once the implementation of JavaComposer is done. This also requires the adjustment of the existing tests.
- 2021-01-20 – Remove the use of the deprecated AnnotationSpec APIs.
- 2021-02-02 – Consolidate the exceptions thrown by the JavaComposer code; currently, that is a mixture of ValidationException, IllegalArgumentException, NullArgumentException and IllegalStateException. At least IllegalStateException might be obsolete.
- 2021-04-02 – Validate the generated Javadocs
- 2023-03-02 – Add the capability to generate Compact Constructors for records. Refer to https://blogs.oracle.com/javamagazine/post/java-records-constructor-methods-inheritance
- 2023-03-06 – Fix the broken @Option for Collections
-
ClassDescriptionThe specification for a generated annotation on a declaration.The specification of a builder for an instance of an implementation of
AnnotationSpec
.The specialisation ofTypeName
for array types.The specification for a fully-qualified class name for top-level and member classes.The definition of a fragment for a*.java
file, potentially containing declarations, statements, and documentation.The definition of a builder for a new instance of an implementation ofCodeBlock
.An implementation ofStringTemplate.Processor
PREVIEW that creates an instance ofCodeBlock
from the given String template.The specification for a generated field declaration.The specification of a builder for an instance of an implementation forFieldSpec
The factory for the various JavaComposer artefacts.This implementation ofRuntimeException
will be thrown by methods of JavaComposer in case an error condition is encountered.The definition for a Java file containing a single top level class.The definition for a builder for an instance of an implementation ofJavaFile
.The specification for a generated lambda construct.The builder for an instance ofLambdaSpec
The various possible layouts for the output created byJavaFile
.The specification for a generated constructor or method declaration.The builder for an instance ofMethodSpec
Assigns Java identifier names to avoid collisions, 'abuse' of keywords, and invalid characters.The specialisation ofTypeName
for parameterised types.The specification for a generated parameter declaration.The builder for an instance ofParameterSpec
The constants for the primitives.Warnings that can be suppressed with the@SuppressWarnings
annotation.The specification for a representation of any type in Java's type system, plusvoid
.The specification of a generated class, interface, annotation or enum declaration.The specification for a builder for an instance of an implementation forTypeSpec
.The specialisation ofTypeName
for type variable names.The specialisation ofTypeName
for wildcard named types.